4-3 Basic Trigonometric Identities

Name _____ Date ___

Goal: Know and use basic theorems relating values of the sine and cosine functions.

Warm Up: One coordinate of a point on the unit circle is given. Find all the possible values of the other coordinate.

a. (0,*a*) _____

How can you find these answers using your calculator? _____

Questions

Introduction

If you know $\cos \theta$, then you can easily find $\cos(-\theta)$, $\sin \theta$ and much, much more. We can do so by using trigonometric identities, which are equations that are _____ for all values of variables for which the expressions on each side are _____

Pythagorean Identity

Pythagorean Identity Theorem

For every θ , $\cos^2\theta + \sin^2\theta = 1$.

A#5

Questions

Example 1: If $\cos \theta = \frac{3}{5}$, find $\sin \theta$.

Example 2: If $\sin \theta = \frac{8}{17}$, find $\cos \theta$.

Activity: Deriving Other Identities

- 1. Label A(1,0).
- 2. Choose an acute θ and use a protractor to perform the rotation R_{θ} on the unit circle; label it P_1 .
- 3. Use a calculator to find the coordinates of $P_1($ _____, ____)
- 4. Use a protractor to label P_2 and a calculator to find $R_{-\theta} \rightarrow P_2(\underline{\hspace{1cm}},\underline{\hspace{1cm}})$
- 5. Conjecture: Taking the opposite of θ ______ to $\cos \theta$, but ______ of $\sin \theta$.
- 7. Conjecture:

A#5

Questions

Opposites Theorem

For all θ ,

$$\cos(-\theta) = \underline{\hspace{1cm}}, \sin(-\theta) = \underline{\hspace{1cm}}$$

and $tan(-\theta) = \underline{\hspace{1cm}}$

Half-Turn Theorem

For all θ ,

$$\sin(180^{\circ} + \theta) = =$$

and
$$\tan(180^{\circ} + \theta) =$$
______ = ____

Supplements Theorem

For all θ ,

$$\cos(180^{\circ} - \theta) = \underline{\hspace{1cm}} = \underline{\hspace{1cm}},$$

$$\sin(180^{\circ} - \theta) = \underline{\hspace{1cm}} = \underline{\hspace{1cm}}$$

and
$$\tan(180^{\circ} - \theta) =$$
______ = ____

Example 3: Given that $\sin 10^{\circ} \approx 0.1736$, find a value of x other than 10° and between 0° and 360° for which $\sin x = 0.1736$.

Example 4: Given that $\sin 172^{\circ} \approx 0.1392$, find a value of x other than 172° and between 0° and 360° for which $\sin x = 0.1392$.

Complements Theorem

For all θ ,

$$\sin(90^{\circ}-\theta) = \underline{\hspace{1cm}} = \underline{\hspace{1cm}}$$

A#5

Questions

Example 5: Given that $\sin 30^{\circ} = \frac{1}{2}$, compute the exact value of each

function below.

- a. $\cos 60^{\circ}$
- b. cos 30°
- c. sin150°

d. $\cos 210^{\circ}$

 $\sin(-30^{\circ})$

Example 6: Given that $\sin x = 0.681$, compute the exact value of each function below.

- a. $\cos x$
- b. tan *x*
- c. $\cos(\pi + x)$

d. $\sin(\pi - x)$

 $\sin(-x)$

Summary: