4-3 Basic Trigonometric Identities Name _____ Date ___ **Goal:** Know and use basic theorems relating values of the sine and cosine functions. **Warm Up:** One coordinate of a point on the unit circle is given. Find all the possible values of the other coordinate. a. (0,*a*) _____ How can you find these answers using your calculator? _____ Questions ## Introduction If you know $\cos \theta$, then you can easily find $\cos(-\theta)$, $\sin \theta$ and much, much more. We can do so by using trigonometric identities, which are equations that are _____ for all values of variables for which the expressions on each side are _____ ## **Pythagorean Identity** **Pythagorean Identity Theorem** For every θ , $\cos^2\theta + \sin^2\theta = 1$. A#5 Questions Example 1: If $\cos \theta = \frac{3}{5}$, find $\sin \theta$. Example 2: If $\sin \theta = \frac{8}{17}$, find $\cos \theta$. **Activity:** Deriving Other Identities - 1. Label A(1,0). - 2. Choose an acute θ and use a protractor to perform the rotation R_{θ} on the unit circle; label it P_1 . - 3. Use a calculator to find the coordinates of $P_1($ _____, ____) - 4. Use a protractor to label P_2 and a calculator to find $R_{-\theta} \rightarrow P_2(\underline{\hspace{1cm}},\underline{\hspace{1cm}})$ - 5. Conjecture: Taking the opposite of θ ______ to $\cos \theta$, but ______ of $\sin \theta$. - 7. Conjecture: A#5 Questions **Opposites Theorem** For all θ , $$\cos(-\theta) = \underline{\hspace{1cm}}, \sin(-\theta) = \underline{\hspace{1cm}}$$ and $tan(-\theta) = \underline{\hspace{1cm}}$ Half-Turn Theorem For all θ , $$\sin(180^{\circ} + \theta) = =$$ and $$\tan(180^{\circ} + \theta) =$$ ______ = ____ **Supplements Theorem** For all θ , $$\cos(180^{\circ} - \theta) = \underline{\hspace{1cm}} = \underline{\hspace{1cm}},$$ $$\sin(180^{\circ} - \theta) = \underline{\hspace{1cm}} = \underline{\hspace{1cm}}$$ and $$\tan(180^{\circ} - \theta) =$$ ______ = ____ Example 3: Given that $\sin 10^{\circ} \approx 0.1736$, find a value of x other than 10° and between 0° and 360° for which $\sin x = 0.1736$. Example 4: Given that $\sin 172^{\circ} \approx 0.1392$, find a value of x other than 172° and between 0° and 360° for which $\sin x = 0.1392$. **Complements Theorem** For all θ , $$\sin(90^{\circ}-\theta) = \underline{\hspace{1cm}} = \underline{\hspace{1cm}}$$ A#5 ## Questions Example 5: Given that $\sin 30^{\circ} = \frac{1}{2}$, compute the exact value of each function below. - a. $\cos 60^{\circ}$ - b. cos 30° - c. sin150° d. $\cos 210^{\circ}$ $\sin(-30^{\circ})$ Example 6: Given that $\sin x = 0.681$, compute the exact value of each function below. - a. $\cos x$ - b. tan *x* - c. $\cos(\pi + x)$ d. $\sin(\pi - x)$ $\sin(-x)$ **Summary:**